Iterative Estimators of Parameters in Linear Models with Partially Variant Coefficients

نویسندگان

  • Shaolin Hu
  • Karl Meinke
  • Rushan Chen
  • Ouyang Huajiang
چکیده

A new kind of linear model with partially variant coefficients is proposed and a series of iterative algorithms are introduced and verified. The new generalized linear model includes the ordinary linear regression model as a special case. The iterative algorithms efficiently overcome some difficulties in computation with multidimensional inputs and incessantly appending parameters. An important application is described at the end of this article, which shows that this new model is reasonable and applicable in practical fields.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liu Estimates and Influence Analysis in Regression Models with Stochastic Linear Restrictions and AR (1) Errors

In the linear regression models with AR (1) error structure when collinearity exists, stochastic linear restrictions or modifications of biased estimators (including Liu estimators) can be used to reduce the estimated variance of the regression coefficients estimates. In this paper, the combination of the biased Liu estimator and stochastic linear restrictions estimator is considered to overcom...

متن کامل

Differenced-Based Double Shrinking in Partial Linear Models

Partial linear model is very flexible when the relation between the covariates and responses, either parametric and nonparametric. However, estimation of the regression coefficients is challenging since one must also estimate the nonparametric component simultaneously. As a remedy, the differencing approach, to eliminate the nonparametric component and estimate the regression coefficients, can ...

متن کامل

Modified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals

When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...

متن کامل

Partially Linear Hazard Regression with Varying-coefficients for Multivariate Survival Data

This paper studies estimation of partially linear hazard regression models with varying coefficients for multivariate survival data. A profile pseudo-partial likelihood estimation method is proposed. The estimation of the parameters of the linear part is accomplished via maximization of the profile pseudo-partial likelihood, while the varying-coefficient functions are considered as nuisance par...

متن کامل

Imputation-based adjusted score equations in generalized linear models with nonignorable missing covariate values

We consider the estimation of unknown parameters in a generalized linear model when some covariates have nonignorable missing values. When an instrument, a covariate that helps identifying parameters under nonignorable missingness, is appropriately specified, a pseudo likelihood approach similar to that in Tang, Little, and Raghunathan (2003) or Zhao and Shao (2015) can be applied. However, thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computer Science

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2007